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A GALERKIN METHOD FOR THE 
FORWARD-BACKWARD HEAT EQUATION 

A. K. AZIZ AND J.-L. LIU 

ABSTRACT. In this paper a new variational method is proposed for the numeri- 
cal approximation of the solution of the forward-backward heat equation. The 
approach consists of first reducing the second-order problem to an equivalent 
first-order system, and then using a finite element procedure with continuous 
elements in both space and time for the numerical approximation. Under suit- 
able regularity assumptions, error estimates and the results of some numerical 
experiments are presented. 

1. INTRODUCTION 

In this paper we consider a new Galerkin method for approximating the 
following parabolic boundary value problem: 

(11) a(x ' t) Ot (x t) - oxx (x t) = f (x , t) V(x , t) E Q, 

q((+1,t)=0 Vte[O, 1], 
(1.2) /i(x, 0) = 0 Vx e [O, 1], 

1. q$(x,1)=0 Vxe[-1,0], 

where Q = (-1, 1) x (O, 1), and the coefficient a(x, t) changes sign in Q. 
Problems of the type co$t = oxx with a taking both positive and negative 

values appear to have been considered by Gevrey in [5, 6], who specifically 
treated the case a(x, t) = xm with m an odd integer. Much later, in 1968, a 
detailed treatment of the case a (x, t) = x was given by Baouendi and Gris- 
vard [3]. A similar treatment in a context where the second-order derivative is 
replaced by a suitable nonlinear differential operator may be found in Lions' 
book [10]. Recently, Goldstein and Mazumdar proved [7] that problem (1.1), 
(1.2) is well posed in a suitable function space. 

Problem (1. 1), (1.2) arises in boundary layer problems in fluid dynamics (cf. 
Stewartson [ 11, 12] and the references contained therein), in plasma physics, 
and in astrophysics in the study of propagation of an electron beam through the 
solar corona (see LaRosa [8]). 
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As far as the numerical treatment of ( 1.1), ( 1.2) is concerned, very little can 
be found in the literature. In [14] this problem is dealt with by a finite dif- 
ference method, where a rather delicate piecing together on the dividing line 
is considered. The main drawback of this approach is that it requires a high- 
degree regularity of solutions in order to obtain a reasonable rate of convergence. 
For example, in [14] it is required that the solution possesses continuous 
derivatives of order 4 in x and order 2 in t to obtain the rate of convergence 
O(k + h 2), where k and h are mesh sizes in time and in space, respectively. 
These regularity assumptions appear to be unrealistic in view of the fact that 
the solution may not even be H' in t. 

By a change of dependent variables, 

U= Ul ] Uz eit+0, U2 = e it+X 

equation (1.1) may be written as the symmetric first-order system 

(1.3) A1ux+A2ut+A3u=f, 

where 

I = [? O] =[0 0] 3 0 1] 0] 

We shall examine a finite element procedure for the numerical approximation 
of the solution for this system of first-order partial differential equations. Our 
results show that the L2 rate of convergence is O(h k), where h is the mesh 
size of space and time, if the solution u E (Hk+ (Q))2 

The finite element approximation for first-order systems in connection with 
the mixed type equations has been studied by Aziz, Leventhal, and Werschulz 
[2]. Many finite element methods for the heat equation have been proposed 
and analyzed in the literature (cf. Thomee [13]). A common approach, often 
referred to as the method of lines, is to first apply the Galerkin method in 
space to reduce the heat equation to a set of ordinary differential equations. 
Then a suitable method is applied to integrate the ordinary differential equa- 
tion. However, our problem (1.1), (1.2) does not fit into this category, simply 
because the coefficient a(x, t) changes sign, i.e., a(x, t) > 0 for x > 0 and 
a(x, t) < 0 for x < 0. In contrast to the method of lines described above, we 
use finite elements to discretize the first-order system (1.3) in space and time 
simultaneously. 

The use of continuous finite element methods to discretize time-dependent 
problems has been proposed in the past. For example, Aziz and Monk [1] pro- 
posed a continuous finite element method for the second-order heat equation; 
however, it does not appear that this method can be extended to our problem. 
Lesaint and Raviart [9] also proposed a collocation method for solving the heat 
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equation, rewritten as a first-order positive symmetric system; however, our 
first-order system is not positive in the sense of Friedrichs [4]. 

2. NOTATION AND DEFINITIONS 

Let Q be a bounded domain in the (x, t) plane with boundary aQ. We 
denote by n = (nx, nt) the outward unit vector normal to Of2. 

We consider the following problem: Given a vector-valued function f = 

(f1, f2) E (L 2(Q)) 2, find a vector-valued function u = (ul, IU2): Q 
- 

R2 
which is a solution of the first-order system 

(2.1) Lu-A1ux+A2uA+A3u=f inQ, 

with the boundary condition 

(2.2) Mu-ul =0 onF, 
where F _F2 u IF3u F5u F6 and the Fi are defined as follows: 

rF= {(x, t): xe [-1,0], t =O, 

F2={(x,t):x=-l, tE[0,l]}, 
F3={(x,t):xE[-l,0], t=1}, 

F4 =(x, t): xe [0, 1], t =l, 

r5= {(x, t): x = 1, t e [0, 1]}, 

r6 {(x, t): xE [0, 1], t = , 

hence aQ = F1 ... uF6 . In order to give a weak formulation of problem (2.1), 
(2.2), we define a 2 x 2 matrix-valued function T and a function space V as 
follows: 

Tv [ a 0 

where a and /3 are known functions in x and t to be specified such that T 
is bounded, and 

V = {u E (H'(Q))2: Mu = 0}. 

We shall make constant use of the classical Sobolev space Hm(Q) provided 
with the norm 

11IV M'Q la,Vm2d II) 

and the seminorm 

where a is a multi-index. 
Define the bilinear form B: V x V -+ R by B(u, v) = (Lu, Tv), where (.,*) 

denotes the (L 2(Q)) inner product. Thus the weak formulation of (2.1) for a 

given f E (L 2(Q))2 is: To find a u E V such that 

(2.3) B(u,v)=(f,Tv) VveV. 
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3. THE GALERKIN PROCEDURE 

In this section we shall derive an a priori estimate for the solution of (2.3) 
and describe our finite element scheme. 

We assume the constants k1 > 0 and k2 > 0 are chosen so that 

HI: Aaa - 2 ('au)t + 2 (flu)x > kl,, 
H2: a? > k2 

H3:cx +/flu<2 k1k2 

H4: antAr Ur > 0. 

Now we state the fundamental result of this section as 

Theorem 3.1. If HI- H4 hold, then there exists a constant C depending only 
on the constants k, and k2 such that 

(3.1) 2 < CB(u, u) Vue V. 

Proof. We have 

B(u, u) = (Lu, Tu) (aJau U- au2 U1 +)AxauI -_ /au u 

-au1 U2 + /3auu2 +au) dQ. 

Since 
a au u 1 (c au2 (a) U 

au2Ul -au1 U2 =-(auIu2)x + axu1u2, 

-/3au u~ = - I(I3au~) + ~(3)u2 - 1U U1 =2 ( DCU X + 
I 

(flu)X 1 

we now let 

11 =f |[(- I(aa)t + ?aa + I (fa)x)u2 (a2+)U1U2+aui]dQ, 

I2 f [( 1U,)t - (aUIU2 + 2 ,au,)X]dQ. 

Applying Green's formula to I2, we obtain 

'2 ~ 
I unu2 ~fJan u 2)ds. I2 2 | I (At2 - aknxU U2 -2 wnxu2 )Is 

rlu ..uF6 

From the boundary conditions we then have: 
on F2 UF3 UJ5 uJ6: I2 = ?, since u =0; 
on Fr: nX = 0, n t= -1, andby H2 and H4, I2 > 0; 
onF4:n =0, n =1,andby H2 and H4, '2>0. 

By HI and H2, we have 

Jz >?f [ki UK1 - (ax+Ia )ju11Hu221+k2u2]dQ. 
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If H3 holds, then it is possible to choose 0 < cl < k1 and 0 < c2 < k2 such 
2 2 that asx + fla < 2V < 2Vkk2. Since -2 7juj IHu21 > C-c1u - c2u2, we 

get 

I > [(k - 2 + (k2 - c2)u2] dQ. 

The result now follows with 1/C = min{k1 - cl, k2 - c2}. o 

To approximate problem (2.3), we in essence replace the Hilbert space V by 
a finite-dimensional subspace Vh which satisfies the boundary condition (2.2). 
Here, h > 0 is a real parameter such that as h - 0O, dim V h 

00 . The 
Galerkin approximation is: Find a uh E Vh such that 

Uh , 
h h) Vh h 

(3.2) B(u v)= (f,Tv) V VhV 

Equation (3.2) is equivalent to a set of linear equations. Indeed, let {?=> be 

a basis for Vh and denote 

[ 2 - [2 ][? 2] 

then 
[Uh] [En [Z iu?<] 

EU [ i ? 1 U2 2 J 

where 

If we denote U= (ul,. ..,un)T and b = (bl, ...,bn)T with 

bj = []= 5 TN ) 1 < j < n, 

then U is given by the linear system 

(3.3) AU=b, 

where A = (aij)I<i j<n and aij = (LNj, TN'). 

Lemma 3.1. A is invertible. 

Proof. Suppose that there is a vector Z such that AZ = 0. Letting 

n 

(3.4) zh Nj , 
j=1 
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we find that 

Z AZ= (z , ...,zn)A [] jz AiZ 
Lz h i 

= EZ (1:(LNj 
TN')zJ) 

= zI (Lz, TN') 
i=I j=l i 

= (Lz, Tzh) = B(zh zh) 

since ZT AZ = 0, and by (3.1), we then have 

C||zhII1o < B(zh5, z = 0. 

Hence zh = 0. Now f0jjn=1 is linearly independent (being a basis for Vh), 
h so that (3.4) and z = 0 imply that Z = 0. Since A is a square matrix with 

trivial nullspace, A is invertible. o 

We now prove existence, uniqueness, and uniform stability of solutions to 
(3.2). 

Theorem 3.2. If HI- H4 hold, then there is a unique uh E Vh satisfying (3.2). 
Moreover, there exists a constant C depending only on the constants k, and k2 
such that 

(3.5) uhH ? CIfH0O. 
Proof. The existence and uniqueness follow from Lemma 3.1; inequality (3.5) 
is an immediate consequence of Theorem 3.1 and the boundedness of T. o 

4. ERROR ANALYSIS 

In this section we shall derive L error estimates for the Galerkin approxi- 
mation problem (3.2). The problem of estimating the error may be reduced to 
a problem in approximation theory. 

Theorem 4.1. Let u and uhbe solutions ofproblems (2.3) and (3.2), respectively. 
If HI- H4 hold, then there exists a C > 0 depending only on the constants k 
and k2 such that 

(4.1) llu-uh1l0o Q < C infh Iu - vhH1. 

h h~~~~~~v 
V 

Proof. Given v E vh, we use Theorem 3.1 to find 

C1Hh ~h 
2 

~?(hvh,uhvh) C, I|u - v |lo, j < B(u -v u U-v* 

= (L(u- vh) T(u h _|C 
h 

||h- vhH|o. 

Setting C3 = C2/C1, we find 

||u -v |o < C3 IU-V 1Q 
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Since 

IIu - ?h i - + |Uh - 

the desired result (4.1) follows with C = 1 + C3. O 

We now make the following assumptions: 

(i) There is an s > O such that u E V n (Hs(Q))2. 
(ii) { Vh }h>o is a regular family of finite elements, where Vh is a subspace 

of V consisting of piecewise polynomials of degree k, where k < s - 1 
(and thus, u E (Hk+ 

I 
(Q)) 2). 

Then we have the following error estimate. 

Theorem 4.2. Suppose that the hypotheses of Theorem 4.1, and (i), (ii) hold. 
Then there is a constant C > 0 depending only on k1 and k2 such that 

(4.2) IIu - uh ll Q < Chk lUk+l Q. 

Proof. Immediate from Theorem 4.1 and the usual interpolation-theoretic re- 
sults. o 

5. EXAMPLES 

We present here some examples to verify that the assumptions made in ?3 
are indeed not very restrictive. Some numerical implementations of the finite 
element method to a particular example will be given. 

Example 1. Consider the following second-order parabolic equation: 

(5.1) Xot(X, t) - Oxx(X, t) = f(X, t) V(x, t) E Q, 

where Q = (-1, 1) x (0, 1), with the boundary conditions 

0(?I, t) = O Vt E [O, 1], 

(5.2) +(X, 0) = 0 VX E [0, 1], 

+(X, 1) = 0 VX E [-I, 0], 

where f is chosen as 

2x(x2 - I)t[(t - 1)2 - 4X2+ t(t - 1)] 

f(x, t) -2t2[(t - 1)2 - 24X2 + 4] Vx > 0, t E [0, 1], 

1 2x(x - 1)(t - 1)(2t - t - 4x2) 

-2(t-l)2(t2 -24X2 +4) Vx<O, te[O,l]. 

It is easy to show that 

(x2 - l)t2[(t _ 1)2 - 4X2] Vx > 0, t E [O, 1], 
t (x2 _ l)(t2 - 4x2)(t - 1)2 Vx < O, t E [O, 1], 
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is an exact solution to the boundary value problem (5.1), (5.2). This typical 
example will be used for all numerical calculations. 

Example 2. For a(x, t) = xm with m an odd positive integer, we choose 
A =0.1, a= 1, and ,=x m+l . Wethenhave 

HI: '(1 +0.2xm) > 0.4=k , 

H2: 1=k2 

H3: x < 2V'-A = 1.2649, 

H4:xmntlrur >0. 
1 4 

Example 3. We now give an example for which a(x, t) = x + 8 t . Let A = 0.1, 
a = 2, and fI = 1. We then have 

HI: 8 + 0.2(x + I t) > 470 = k 

H2: 2 =k2 

H3: x + It < I = 1.125 < 2 = 1.1832, 

H4: (x + 8 t)ntIr ur> 0. 

For the finite element procedure, we formulate (5.1) as a first-order system 
which is not symmetric positive. 

Now, the parameters A, a, and /3 are chosen as 

(5.3) A =0.1, a=2, ,B=2. 

If 

(5.4) u= =i [e20.] 
[U2 e [01 o x J 

then using (5.1), we obtain the system of first-order equations 

Lu = A1ux + A2uA + A3u 
' -1 -x 0' --O.lx O 

(5.5) =- 1 ? ux + ? ? ut + 0 1 u 

e-? ltf = 

e0f 
in Q, 

with boundary condition 

(5.6) u1(x,t)=0 V(x,t)E172UF3 U 15 u F6. 

With the choice of (5.3), we then have the bounded operator 

T _[2 0] 
- 2x 21 
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Let us verify the hypotheses 

HI: 1+0.2x> 4=k , 

H2: 2 =k2 

H3: 2x < 2 

H4: xntIrl Ur4 > ?. 

After subdividing Q into squares, we choose the space of approximating 
functions Vh as the set of piecewise bivariate polynomials with degree < 2 on 
the squares which satisfy boundary condition (5.6). 

In Table 5.1 we see the L2 error and the L2 rate of convergence for various 
mesh sizes h. These results show O(h 2) accuracy. 

TABLE 5.1 
Finite element computation 

h maxlel L error L rate 
7 4.271 1.104 

1.99 
_ 1.208 0.276 

2.02 

8 0.316 0.067 
2.01 

0.078 0.016 _ 
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